Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Cardiovasc Res ; 120(2): 203-214, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38252891

RESUMO

AIMS: Pulmonary arterial hypertension (PAH) is characterized by extensive pulmonary arterial remodelling. Although mesenchymal stem cell (MSC)-derived exosomes provide protective effects in PAH, MSCs exhibit limited senescence during in vitro expansion compared with the induced pluripotent stem cells (iPSCs). Moreover, the exact mechanism is not known. METHODS AND RESULTS: In this study, we used murine iPSCs generated from mouse embryonic fibroblasts with triple factor (Oct4, Klf4, and Sox2) transduction to determine the efficacy and action mechanism of iPSC-derived exosomes (iPSC-Exo) in attenuating PAH in rats with monocrotaline (MCT)-induced pulmonary hypertension. Both early and late iPSC-Exo treatment effectively prevented the wall thickening and muscularization of pulmonary arterioles, improved the right ventricular systolic pressure, and alleviated the right ventricular hypertrophy in MCT-induced PAH rats. Pulmonary artery smooth muscle cells (PASMC) derived from MCT-treated rats (MCT-PASMC) developed more proliferative and pro-migratory phenotypes, which were attenuated by the iPSC-Exo treatment. Moreover, the proliferation and migration of MCT-PASMC were reduced by iPSC-Exo with suppression of PCNA, cyclin D1, MMP-1, and MMP-10, which are mediated via the HIF-1α and P21-activated kinase 1/AKT/Runx2 pathways. CONCLUSION: IPSC-Exo are effective at reversing pulmonary hypertension by reducing pulmonary vascular remodelling and may provide an iPSC-free therapy for the treatment of PAH.


Assuntos
Exossomos , Hipertensão Pulmonar , Células-Tronco Pluripotentes Induzidas , Hipertensão Arterial Pulmonar , Ratos , Animais , Camundongos , Hipertensão Arterial Pulmonar/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Remodelação Vascular , Exossomos/metabolismo , Fibroblastos/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Artéria Pulmonar , Monocrotalina/efeitos adversos , Monocrotalina/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L252-L265, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226418

RESUMO

Pulmonary arterial hypertension (PAH) is a morbid disease characterized by significant lung endothelial cell (EC) dysfunction. Prior work has shown that microvascular endothelial cells (MVECs) isolated from animals with experimental PAH and patients with PAH exhibit significant abnormalities in metabolism and calcium signaling. With regards to metabolism, we and others have shown evidence of increased aerobic glycolysis and evidence of increased utilization of alternate fuel sources (such as fatty acids) in PAH EC. In the realm of calcium signaling, our prior work linked increased activity of the transient receptor potential vanilloid-4 (TRPV4) channel to increased proliferation of MVECs isolated from the Sugen/Hypoxia rat model of PAH (SuHx-MVECs). However, the relationship between metabolic shifts and calcium abnormalities was not clear. Specifically, whether shifts in metabolism were responsible for increasing TRPV4 channel activity in SuHx-MVECs was not known. In this study, using human data, serum samples from SuHx rats, and SuHx-MVECs, we describe the consequences of increased MVEC fatty acid oxidation in PAH. In human samples, we observed an increase in long-chain fatty acid levels that was associated with PAH severity. Next, using SuHx rats and SuHx-MVECs, we observed increased intracellular levels of lipids. We also show that increasing intracellular lipid content increases TRPV4 activity, whereas inhibiting fatty acid oxidation normalizes basal calcium levels in SuHx-MVECs. By exploring the fate of fatty acid-derived carbons, we observed that the metabolite linking increased intracellular lipids to TRPV4 activity was ß-hydroxybutyrate (BOHB), a product of fatty acid oxidation. Finally, we show that BOHB supplementation alone is sufficient to sensitize the TRPV4 channel in rat and mouse MVECs. Returning to humans, we observe a transpulmonary BOHB gradient in human patients with PAH. Thus, we establish a link between fatty acid oxidation, BOHB production, and TRPV4 activity in MVECs in PAH. These data provide new insight into metabolic regulation of calcium signaling in lung MVECs in PAH.NEW & NOTEWORTHY In this paper, we explore the link between metabolism and intracellular calcium levels in microvascular endothelial cells (MVECs) in pulmonary arterial hypertension (PAH). We show that fatty acid oxidation promotes sensitivity of the transient receptor potential vanilloid-4 (TRPV4) calcium channel in MVECs isolated from a rodent model of PAH.


Assuntos
Antineoplásicos , Hipertensão Arterial Pulmonar , Animais , Humanos , Camundongos , Ratos , Cálcio/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Ácidos Graxos/metabolismo , Lipídeos , Pulmão/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Canais de Cátion TRPV/metabolismo
3.
J Clin Invest ; 134(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015641

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating and progressive disease with limited treatment options. Endothelial dysfunction plays a central role in the development and progression of PAH, yet the underlying mechanisms are incompletely understood. The endosome-lysosome system is important to maintain cellular health, and the small GTPase RAB7 regulates many functions of this system. Here, we explored the role of RAB7 in endothelial cell (EC) function and lung vascular homeostasis. We found reduced expression of RAB7 in ECs from patients with PAH. Endothelial haploinsufficiency of RAB7 caused spontaneous pulmonary hypertension (PH) in mice. Silencing of RAB7 in ECs induced broad changes in gene expression revealed via RNA-Seq, and RAB7-silenced ECs showed impaired angiogenesis and expansion of a senescent cell fraction, combined with impaired endolysosomal trafficking and degradation, suggesting inhibition of autophagy at the predegradation level. Furthermore, mitochondrial membrane potential and oxidative phosphorylation were decreased, and glycolysis was enhanced. Treatment with the RAB7 activator ML-098 reduced established PH in rats with chronic hypoxia/SU5416. In conclusion, we demonstrate for the first time to our knowledge the fundamental impairment of EC function by loss of RAB7, causing PH, and show RAB7 activation to be a potential therapeutic strategy in a preclinical model of PH.


Assuntos
Hipertensão Pulmonar , Animais , Humanos , Camundongos , Ratos , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar/etiologia , Hipóxia/metabolismo , Pulmão/metabolismo , Artéria Pulmonar/metabolismo
4.
Pediatr Dev Pathol ; 27(1): 83-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37801629

RESUMO

Tbx4 protein, expressed in mesenchyme of the developing lung, contributes to airway branching and distal lung growth. An association between pediatric onset of pulmonary arterial hypertension (PAH) and genetic variations coding for the T-box transcription factor 4 gene (TBX4) has been increasingly recognized. Tbx4-related PAH onset has a bimodal age distribution, including severe to lethal PAH in newborns and later onset PAH. We present an autopsy study of a 24-year-old male with a heterozygous TBX4 variant, who developed pulmonary arterial hypertension at age 12 years. This unique case highlights the complex pulmonary histopathology leading to lethal cardiopulmonary failure in the setting of TBX4 mutation.


Assuntos
Mutação em Linhagem Germinativa , Hipertensão Arterial Pulmonar , Masculino , Criança , Humanos , Recém-Nascido , Adulto Jovem , Adulto , Hipertensão Arterial Pulmonar/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Pulmão , Mutação , Fenótipo , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/metabolismo , Fatores de Transcrição/genética
5.
Sci Rep ; 13(1): 22534, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110438

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by endothelial cell (EC) dysfunction. There are no data from living patients to inform whether differential gene expression of pulmonary artery ECs (PAECs) can discern disease subtypes, progression and pathogenesis. We aimed to further validate our previously described method to propagate ECs from right heart catheter (RHC) balloon tips and to perform additional PAEC phenotyping. We performed bulk RNA sequencing of PAECs from RHC balloons. Using unsupervised dimensionality reduction and clustering we compared transcriptional signatures from PAH to controls and other forms of pulmonary hypertension. Select PAEC samples underwent single cell and population growth characterization and anoikis quantification. Fifty-four specimens were analyzed from 49 subjects. The transcriptome appeared stable over limited passages. Six genes involved in sex steroid signaling, metabolism, and oncogenesis were significantly upregulated in PAH subjects as compared to controls. Genes regulating BMP and Wnt signaling, oxidative stress and cellular metabolism were differentially expressed in PAH subjects. Changes in gene expression tracked with clinical events in PAH subjects with serial samples over time. Functional assays demonstrated enhanced replication competency and anoikis resistance. Our findings recapitulate fundamental biological processes of PAH and provide new evidence of a cancer-like phenotype in ECs from the central vasculature of PAH patients. This "cell biopsy" method may provide insight into patient and lung EC heterogeneity to advance precision medicine approaches in PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Doenças Vasculares , Humanos , Hipertensão Pulmonar/patologia , Artéria Pulmonar/patologia , Células Endoteliais/metabolismo , Hipertensão Arterial Pulmonar/patologia , Hipertensão Pulmonar Primária Familiar/metabolismo , Doenças Vasculares/patologia , Via de Sinalização Wnt/genética
6.
Nat Commun ; 14(1): 7578, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989727

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease in which pulmonary arterial (PA) endothelial cell (EC) dysfunction is associated with unrepaired DNA damage. BMPR2 is the most common genetic cause of PAH. We report that human PAEC with reduced BMPR2 have persistent DNA damage in room air after hypoxia (reoxygenation), as do mice with EC-specific deletion of Bmpr2 (EC-Bmpr2-/-) and persistent pulmonary hypertension. Similar findings are observed in PAEC with loss of the DNA damage sensor ATM, and in mice with Atm deleted in EC (EC-Atm-/-). Gene expression analysis of EC-Atm-/- and EC-Bmpr2-/- lung EC reveals reduced Foxf1, a transcription factor with selectivity for lung EC. Reducing FOXF1 in control PAEC induces DNA damage and impaired angiogenesis whereas transfection of FOXF1 in PAH PAEC repairs DNA damage and restores angiogenesis. Lung EC targeted delivery of Foxf1 to reoxygenated EC-Bmpr2-/- mice repairs DNA damage, induces angiogenesis and reverses pulmonary hypertension.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Humanos , Animais , Hipertensão Arterial Pulmonar/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Artéria Pulmonar/metabolismo , Dano ao DNA , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
7.
J Am Heart Assoc ; 12(23): e031435, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38014665

RESUMO

BACKGROUND: Pulmonary artery hypertension (PAH) is a fatal disease characterized by a complex pathogenesis. Exosomes containing microRNAs (miRs) have emerged as a novel biomarker. Transpulmonary exosomal miRs offer valuable insights into pulmonary circulation microenvironments. Hereby, we aimed to explore the potentials of transpulmonary exosomal miRs as differentiating factors between idiopathic PAH and congenital heart disease (CHD)-related PAH. METHODS AND RESULTS: During right heart catheterization, we collected exosomes at pulmonary arteries in 25 patients diagnosed with idiopathic PAH and 20 patients with CHD-related PAH. Next-generation sequencing identified several candidate exosomal miRs. Using quantitative polymerase chain reaction, we validated the expressions of these miRs and revealed significantly elevated expressions of miR-21, miR-139-5p, miR-155-5p, let-7f-5p, miR-328-3p, miR-330-3p, and miR-103a-3p in patients with CHD-related PAH, in contrast to patients with idiopathic PAH. Among these miRs, miR-21 exhibited the highest expression in patients with CHD-related PAH. These findings were further corroborated in an external cohort comprising 10 patients with idiopathic PAH and 8 patients with CHD-related PAH. Using an in vitro flow model simulating the shear stress experienced by pulmonary endothelial cells, we observed a significant upregulation of miR-21. Suppressing miR-21 rescued the shear stress-induced downregulation of the RAS/phosphatidylinositol 3-kinase/protein kinase B pathway, leading to a mitigation of apoptosis. CONCLUSIONS: Our study identified a pronounced expression of transpulmonary exosomal miR-21, particularly in patients with CHD-related PAH, through next-generation sequencing analysis. Further investigation is warranted to elucidate the regulatory mechanisms involving miR-21 in the pathophysiology of PAH.


Assuntos
Cardiopatias Congênitas , MicroRNAs , Hipertensão Arterial Pulmonar , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Cardiopatias Congênitas/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L741-L755, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847687

RESUMO

Pulmonary arterial hypertension (PAH) is a disease characterized by increased vasoconstriction and vascular remodeling. Pulmonary artery smooth muscle cells (PASMCs) highly express the transcription factor hypoxia-inducible factor-1α (HIF-1α), yet the role of PASMC HIF-1α in the development of PAH remains controversial. To study the role of SMC HIF-1α in the pulmonary vascular response to acute and chronic hypoxia, we used a gain-of-function strategy to stabilize HIF-1α in PASMC by generating mice lacking prolyl hydroxylase domain (PHD) 1 and 2 in SM22α-expressing cells. This strategy increased HIF-1α expression and transcriptional activity under conditions of normoxia and hypoxia. Acute hypoxia increased right ventricular systolic pressure (RVSP) in control, but not in SM22α-PHD1/2-/- mice. Chronic hypoxia increased RVSP and vascular remodeling more in control SM22α-PHD1/2+/+ than in SM22α-PHD1/2-/- mice. In vitro studies demonstrated increased contractility and myosin light chain phosphorylation in isolated PHD1/2+/+ compared with PHD1/2-/- PASMC under both normoxic and hypoxic conditions. After chronic hypoxia, there was more p27 and less vascular remodeling in SM22α-PHD1/2-/- compared with SM22α-PHD1/2+/+ mice. Hypoxia increased p27 in PASMC isolated from control patients, but not in cells from patients with idiopathic pulmonary arterial hypertension (IPAH). These findings highlight an SM22α-expressing cell-specific role for HIF-1α in the inhibition of pulmonary vasoconstriction and vascular remodeling. Modulating HIF-1α expression in PASMC may represent a promising preventative and therapeutic strategy for patients with PAH.NEW & NOTEWORTHY In a mouse model wherein hypoxia-inducible factor 1 alpha (HIF-1α) is stabilized in vascular smooth muscle cells, we found that HIF-1α regulates vasoconstriction by limiting phosphorylation of myosin light chain and regulates vascular remodeling through p27 induction. These findings highlight a cell-specific role for HIF-1α in the inhibition of pulmonary vasoconstriction and vascular remodeling.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Humanos , Camundongos , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Cadeias Leves de Miosina/metabolismo , Prolil Hidroxilases/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Remodelação Vascular
9.
Hypertension ; 80(11): 2357-2371, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37737027

RESUMO

BACKGROUND: Rare genetic variants and genetic variation at loci in an enhancer in SOX17 (SRY-box transcription factor 17) are identified in patients with idiopathic pulmonary arterial hypertension (PAH) and PAH with congenital heart disease. However, the exact role of genetic variants or mutations in SOX17 in PAH pathogenesis has not been reported. METHODS: SOX17 expression was evaluated in the lungs and pulmonary endothelial cells (ECs) of patients with idiopathic PAH. Mice with Tie2Cre-mediated Sox17 knockdown and EC-specific Sox17 deletion were generated to determine the role of SOX17 deficiency in the pathogenesis of PAH. Human pulmonary ECs were cultured to understand the role of SOX17 deficiency. Single-cell RNA sequencing, RNA-sequencing analysis, and luciferase assay were performed to understand the underlying molecular mechanisms of SOX17 deficiency-induced PAH. E2F1 (E2F transcription factor 1) inhibitor HLM006474 was used in EC-specific Sox17 mice. RESULTS: SOX17 expression was downregulated in the lung and pulmonary ECs from patients with idiopathic PAH. Mice with Tie2Cre-mediated Sox17 knockdown and EC-specific Sox17 deletion induced spontaneously mild pulmonary hypertension. Loss of endothelial Sox17 in EC exacerbated hypoxia-induced pulmonary hypertension in mice. Loss of SOX17 in lung ECs induced endothelial dysfunctions including upregulation of cell cycle programming, proliferative and antiapoptotic phenotypes, augmentation of paracrine effect on pulmonary arterial smooth muscle cells, impaired cellular junction, and BMP (bone morphogenetic protein) signaling. E2F1 signaling was shown to mediate the SOX17 deficiency-induced EC dysfunction. Pharmacological inhibition of E2F1 in Sox17 EC-deficient mice attenuated pulmonary hypertension development. CONCLUSIONS: Our study demonstrated that endothelial SOX17 deficiency induces pulmonary hypertension through E2F1. Thus, targeting E2F1 signaling represents a promising approach in patients with PAH.


Assuntos
Hipertensão Pulmonar , Humanos , Camundongos , Animais , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Células Endoteliais/metabolismo , Pulmão/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Artéria Pulmonar/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição SOXF/farmacologia , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo
10.
Epigenetics ; 18(1): 2242225, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37537976

RESUMO

Idiopathic pulmonary arterial hypertension (IPAH) is a serious and fatal disease. Recently, m6A has been reported to play an important role in the lungs of IPAH patients and experimental pulmonary hypertension models. However, the meaning of m6A mRNAs in the peripheral blood of IPAH patients remains largely unexplored. We aimed to construct a transcriptome-wide map of m6A mRNAs in the peripheral blood of IPAH patients. M6A RNA Methylation Quantification Kit was utilized to measure the total m6A levels in the peripheral blood of IPAH patients. A combination of MeRIP-seq, RNA-seq and bioinformatics analysis was utilized to select m6A-modified hub genes of IPAH. MeRIP-qPCR and RT-qPCR were used to measure the m6A levels and mRNA levels of TP53, RPS27A, SMAD3 and FoxO3 in IPAH patients. Western blot was performed to assess the protein levels of m6A related regulators and m6A related genes in experimental PH animal models, hypoxia-treated and PDGF-BB induced PASMCs. We found that the total m6A levels were increased in peripheral blood of IPAH patients and verified that m6A levels of RPS27A and SMAD3 were significantly elevated and m6A levels of TP53 and FoxO3 were significantly reduced. The mRNA or protein levels of RPS27A, SMAD3, TP53 and FoxO3 were changed in human blood samples, experimental PH animal models and PDGF-BB induced PASMCs. Moreover, METTL3 and YTHDF1 were increased in the hypoxia induced pulmonary hypertension rat model, hypoxia-treated and PDGF-BB induced PASMCs. These finding suggested that m6A may play an important role in IPAH.


Assuntos
Hipertensão Pulmonar , Humanos , Ratos , Animais , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Becaplermina/genética , Becaplermina/metabolismo , Artéria Pulmonar/metabolismo , Epigenoma , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Metilação de DNA , RNA Mensageiro/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
11.
OMICS ; 27(7): 315-326, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410515

RESUMO

Idiopathic pulmonary arterial hypertension (IPAH) is a progressive disease that affects the pulmonary arteries, resulting in increased pulmonary vascular resistance and right ventricular dysfunction, which can ultimately lead to heart failure and death. The molecular substrates of IPAH are poorly understood while diagnostics and therapeutics innovation remain as unmet needs for this debilitating disease. In this study, a network-based methodology was used to uncover the salient molecular mechanisms of IPAH to inform drug and diagnostic discovery, and personalized medicine. Expression profiling datasets associated with IPAH were obtained from the Gene Expression Omnibus database: GSE15197, GSE113439, GSE53408, and GSE67597. The comparative analysis of mRNA and miRNA expression data and the modular analysis of a transcriptome-based weighted gene coexpression network unraveled disease-specific gene and miRNA signatures. DEAD-box helicase 52 (DDx52), ESF1 nucleolar pre-RNA processing protein (ESF1), heterogeneous nuclear ribonuclearprotein A3 (MNRNPA3), Myosin VA (MYO5A), replication factor C subunit 1 (RFC1), and arginine and serine rich coiled coil 1 (RSRC1) were detected as the salient genes for IPAH. In addition, the salient gene-based drug repositioning analysis identified alvespimycin, tanespimycin, geldanamycin, LY294002, cephaeline, digoxigenin, lanatoside C, helveticoside, trichostatin A, phenoxybenzamine, genistein, pioglitazone, and rosiglitazone as potential drug candidates for IPAH. In conclusion, this study provides new molecular signatures in relation to IPAH and attendant potential drug candidates for further experimental and translational clinical research for patients with IPAH.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Humanos , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/genética , Multiômica , Artéria Pulmonar/metabolismo , MicroRNAs/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L246-L261, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366608

RESUMO

Pulmonary arterial hypertension (PAH) is due to progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated store-operated Ca2+ entry (SOCE) contributes to PAH pathogenesis, mediating human PA smooth muscle cell (hPASMC) abnormalities. The transient receptor potential canonical channels (TRPC family) are Ca2+-permeable channels contributing to SOCE in different cell types, including PASMCs. However, the properties, signaling pathways, and contribution to Ca2+ signaling of each TRPC isoform are unclear in human PAH. We studied in vitro the impact of TRPC knockdown on control and PAH-hPASMCs function. In vivo, we analyzed the consequences of pharmacological TRPC inhibition using the experimental model of pulmonary hypertension (PH) induced by monocrotaline (MCT) exposure. Compared with control-hPASMCs cells, in PAH-hPASMCs, we found a decreased TRPC4 expression, overexpression of TRPC3 and TRPC6, and unchanged TRPC1 expression. Using the siRNA strategy, we found that the knockdown of TRPC1-C3-C4-C6 reduced the SOCE and the proliferation rate of PAH-hPASMCs. Only TRPC1 knockdown decreased the migration capacity of PAH-hPASMCs. After PAH-hPASMCs exposure to the apoptosis inducer staurosporine, TRPC1-C3-C4-C6 knockdown increased the percentage of apoptotic cells, suggesting that these channels promote apoptosis resistance. Only TRPC3 function contributed to exacerbated calcineurin activity. In the MCT-PH rat model, only TRPC3 protein expression was increased in lungs compared with control rats, and in vivo "curative" administration of a TRPC3 inhibitor attenuated PH development in rats. These results suggest that TRPC channels contribute to PAH-hPASMCs dysfunctions, including SOCE, proliferation, migration, and apoptosis resistance, and could be considered as therapeutic targets in PAH.NEW & NOTEWORTHY TRPC3 is increased in human and experimental pulmonary arterial hypertension (PAH). In PAH pulmonary arterial smooth muscle cells, TRPC3 participates in the aberrant store-operated Ca2+ entry contributing to their pathological cell phenotypes (exacerbated proliferation, enhanced migration, apoptosis resistance, and vasoconstriction). Pharmacological in vivo inhibition of TRPC3 reduces the development of experimental PAH. Even if other TRPC acts on PAH development, our results prove that TRPC3 inhibition could be considered as an innovative treatment for PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Canais de Potencial de Receptor Transitório , Humanos , Ratos , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar/patologia , Artéria Pulmonar/metabolismo , Miócitos de Músculo Liso/metabolismo , Cálcio/metabolismo
13.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298522

RESUMO

Pulmonary arterial hypertension (PAH) is a rare disease characterized by pulmonary vascular remodeling leading to right heart failure and death. To date, despite the three therapeutic approaches targeting the three major endothelial dysfunction pathways based on the prostacyclin, nitric oxide/cyclic guanosine monophosphate, and endothelin pathways, PAH remains a serious disease. As such, new targets and therapeutic agents are needed. Mitochondrial metabolic dysfunction is one of the mechanisms involved in PAH pathogenesis in part through the induction of a Warburg metabolic state of enhanced glycolysis but also through the upregulation of glutaminolysis, tricarboxylic cycle and electron transport chain dysfunction, dysregulation of fatty acid oxidation or mitochondrial dynamics alterations. The aim of this review is to shed light on the main mitochondrial metabolic pathways involved in PAH and to provide an update on the resulting interesting potential therapeutic perspectives.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Pulmonar Primária Familiar/metabolismo , Glicólise/fisiologia , Mitocôndrias/metabolismo , Hipertensão Arterial Pulmonar/metabolismo
14.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37298685

RESUMO

Pulmonary hypertension (PH) is characterized by a progressive increase in pulmonary arterial pressure and pulmonary vascular resistance. In a short time, it leads to right ventricular failure and, consequently, to death. The most common causes of PH include left heart disease and lung disease. Despite the significant development of medicine and related sciences observed in recent years, we still suffer from a lack of effective treatment that would significantly influence the prognosis and prolong life expectancy of patients with PH. One type of PH is pulmonary arterial hypertension (PAH). The pathophysiology of PAH is based on increased cell proliferation and resistance to apoptosis in the small pulmonary arteries, leading to pulmonary vascular remodeling. However, studies conducted in recent years have shown that epigenetic changes may also lie behind the pathogenesis of PAH. Epigenetics is the study of changes in gene expression that are not related to changes in the sequence of nucleotides in DNA. In addition to DNA methylation or histone modification, epigenetic research focuses on non-coding RNAs, which include microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Preliminary research results give hope that targeting epigenetic regulators may lead to new, potential therapeutic possibilities in the treatment of PAH.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Hipertensão Arterial Pulmonar , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Pulmão/patologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar Primária Familiar/metabolismo , Artéria Pulmonar/patologia
15.
Front Immunol ; 14: 1152881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153557

RESUMO

Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary vascular disease characterized by progressive pulmonary artery pressure elevation, increased pulmonary vascular resistance and ultimately right heart failure. Studies have demonstrated the involvement of multiple immune cells in the development of PAH in patients with PAH and in experimental PAH. Among them, macrophages, as the predominant inflammatory cells infiltrating around PAH lesions, play a crucial role in exacerbating pulmonary vascular remodeling in PAH. Macrophages are generally polarized into (classic) M1 and (alternative) M2 phenotypes, they accelerate the process of PAH by secreting various chemokines and growth factors (CX3CR1, PDGF). In this review we summarize the mechanisms of immune cell action in PAH, as well as the key factors that regulate the polarization of macrophages in different directions and their functional changes after polarization. We also summarize the effects of different microenvironments on macrophages in PAH. The insight into the interactions between macrophages and other cells, chemokines and growth factors may provide important clues for the development of new, safe and effective immune-targeted therapies for PAH.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Macrófagos/metabolismo , Insuficiência Cardíaca/metabolismo
16.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L783-L798, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37039367

RESUMO

NR2F2 is expressed in endothelial cells (ECs) and Nr2f2 knockout produces lethal cardiovascular defects. In humans, reduced NR2F2 expression is associated with cardiovascular diseases including congenital heart disease and atherosclerosis. Here, NR2F2 silencing in human primary ECs led to inflammation, endothelial-to-mesenchymal transition (EndMT), proliferation, hypermigration, apoptosis-resistance, and increased production of reactive oxygen species. These changes were associated with STAT and AKT activation along with increased production of DKK1. Co-silencing DKK1 and NR2F2 prevented NR2F2-loss-induced STAT and AKT activation and reversed EndMT. Serum DKK1 concentrations were elevated in patients with pulmonary arterial hypertension (PAH) and DKK1 was secreted by ECs in response to in vitro loss of either BMPR2 or CAV1, which are genetic defects associated with the development of PAH. In human primary ECs, NR2F2 suppressed DKK1, whereas its loss conversely induced DKK1 and disrupted endothelial homeostasis, promoting phenotypic abnormalities associated with pathologic vascular remodeling. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating chronic vascular diseases associated with EC dysfunction.NEW & NOTEWORTHY NR2F2 loss in the endothelial lining of blood vessels is associated with cardiovascular disease. Here, NR2F2-silenced human endothelial cells were inflammatory, proliferative, hypermigratory, and apoptosis-resistant with increased oxidant stress and endothelial-to-mesenchymal transition. DKK1 was induced in NR2F2-silenced endothelial cells, while co-silencing NR2F2 and DKK1 prevented NR2F2-loss-associated abnormalities in endothelial signaling and phenotype. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating vascular diseases associated with endothelial dysfunction.


Assuntos
Hipertensão Arterial Pulmonar , Doenças Vasculares , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Doenças Vasculares/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Inflamação/patologia , Fator II de Transcrição COUP/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
17.
Eur Respir J ; 61(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024132

RESUMO

INTRODUCTION: Pulmonary arterial hypertension (PAH) is characterised by loss of microvessels. The Wnt pathways control pulmonary angiogenesis but their role in PAH is incompletely understood. We hypothesised that Wnt activation in pulmonary microvascular endothelial cells (PMVECs) is required for pulmonary angiogenesis, and its loss contributes to PAH. METHODS: Lung tissue and PMVECs from healthy and PAH patients were screened for Wnt production. Global and endothelial-specific Wnt7a -/- mice were generated and exposed to chronic hypoxia and Sugen-hypoxia (SuHx). RESULTS: Healthy PMVECs demonstrated >6-fold Wnt7a expression during angiogenesis that was absent in PAH PMVECs and lungs. Wnt7a expression correlated with the formation of tip cells, a migratory endothelial phenotype critical for angiogenesis. PAH PMVECs demonstrated reduced vascular endothelial growth factor (VEGF)-induced tip cell formation as evidenced by reduced filopodia formation and motility, which was partially rescued by recombinant Wnt7a. We discovered that Wnt7a promotes VEGF signalling by facilitating Y1175 tyrosine phosphorylation in vascular endothelial growth factor receptor 2 (VEGFR2) through receptor tyrosine kinase-like orphan receptor 2 (ROR2), a Wnt-specific receptor. We found that ROR2 knockdown mimics Wnt7a insufficiency and prevents recovery of tip cell formation with Wnt7a stimulation. While there was no difference between wild-type and endothelial-specific Wnt7a -/- mice under either chronic hypoxia or SuHx, global Wnt7a +/- mice in hypoxia demonstrated higher pulmonary pressures and severe right ventricular and lung vascular remodelling. Similar to PAH, Wnt7a +/- PMVECs exhibited an insufficient angiogenic response to VEGF-A that improved with Wnt7a. CONCLUSIONS: Wnt7a promotes VEGF signalling in lung PMVECs and its loss is associated with an insufficient VEGF-A angiogenic response. We propose that Wnt7a deficiency contributes to progressive small vessel loss in PAH.


Assuntos
Hipertensão Arterial Pulmonar , Camundongos , Animais , Hipertensão Arterial Pulmonar/complicações , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipóxia/metabolismo
18.
Circulation ; 147(21): 1606-1621, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37066790

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease characterized by remodeling of the pulmonary arteries, increased vascular resistance, and right-sided heart failure. Genome-wide association studies of idiopathic/heritable PAH established novel genetic risk variants, including conserved enhancers upstream of transcription factor (TF) SOX17 containing 2 independent signals. SOX17 is an important TF in embryonic development and in the homeostasis of pulmonary artery endothelial cells (hPAEC) in the adult. Rare pathogenic mutations in SOX17 cause heritable PAH. We hypothesized that PAH risk alleles in an enhancer region impair TF-binding upstream of SOX17, which in turn reduces SOX17 expression and contributes to disturbed endothelial cell function and PAH development. METHODS: CRISPR manipulation and siRNA were used to modulate SOX17 expression. Electromobility shift assays were used to confirm in silico-predicted TF differential binding to the SOX17 variants. Functional assays in hPAECs were used to establish the biological consequences of SOX17 loss. In silico analysis with the connectivity map was used to predict compounds that rescue disturbed SOX17 signaling. Mice with deletion of the SOX17-signal 1 enhancer region (SOX17-4593/enhKO) were phenotyped in response to chronic hypoxia and SU5416/hypoxia. RESULTS: CRISPR inhibition of SOX17-signal 2 and deletion of SOX17-signal 1 specifically decreased SOX17 expression. Electromobility shift assays demonstrated differential binding of hPAEC nuclear proteins to the risk and nonrisk alleles from both SOX17 signals. Candidate TFs HOXA5 and ROR-α were identified through in silico analysis and antibody electromobility shift assays. Analysis of the hPAEC transcriptomes revealed alteration of PAH-relevant pathways on SOX17 silencing, including extracellular matrix regulation. SOX17 silencing in hPAECs resulted in increased apoptosis, proliferation, and disturbance of barrier function. With the use of the connectivity map, compounds were identified that reversed the SOX17-dysfunction transcriptomic signatures in hPAECs. SOX17 enhancer knockout in mice reduced lung SOX17 expression, resulting in more severe pulmonary vascular leak and hypoxia or SU5416/hypoxia-induced pulmonary hypertension. CONCLUSIONS: Common PAH risk variants upstream of the SOX17 promoter reduce endothelial SOX17 expression, at least in part, through differential binding of HOXA5 and ROR-α. Reduced SOX17 expression results in disturbed hPAEC function and PAH. Existing drug compounds can reverse the disturbed SOX17 pulmonary endothelial transcriptomic signature.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Animais , Hipertensão Pulmonar/metabolismo , Estudo de Associação Genômica Ampla , Células Endoteliais/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar , Hipóxia/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Fatores de Transcrição/metabolismo , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
19.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047359

RESUMO

Pulmonary arterial hypertension (PAH) is a group of severe, progressive, and debilitating diseases with limited therapeutic options. This study aimed to explore novel therapeutic targets in PAH through bioinformatics and experiments. Weighted gene co-expression network analysis (WGCNA) was applied to detect gene modules related to PAH, based on the GSE15197, GSE113439, and GSE117261. GSE53408 was applied as validation set. Subsequently, the validated most differentially regulated hub gene was selected for further ex vivo and in vitro assays. PARM1, TSHZ2, and CCDC80 were analyzed as potential intervention targets for PAH. Consistently with the bioinformatic results, our ex vivo and in vitro data indicated that PARM1 expression increased significantly in the lung tissue and/or pulmonary artery of the MCT-induced PAH rats and hypoxia-induced PAH mice in comparison with the respective controls. Besides, a similar expression pattern of PARM1 was found in the hypoxia- and PDGF--treated isolated rat primary pulmonary arterial smooth muscle cells (PASMCs). In addition, hypoxia/PDGF--induced PARM1 protein expression could promote the elevation of phosphorylation of AKT, phosphorylation of FOXO3A and PCNA, and finally the proliferation of PASMCs in vitro, whereas PARM1 siRNA treatment inhibited it. Mechanistically, PARM1 promoted PAH via AKT/FOXO3A/PCNA signaling pathway-induced PASMC proliferation.


Assuntos
Hipertensão Arterial Pulmonar , Animais , Camundongos , Ratos , Proliferação de Células , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/metabolismo
20.
Am J Respir Cell Mol Biol ; 69(2): 147-158, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36917789

RESUMO

Reduced expression and/or activity of Kv1.5 channels (encoded by KCNA5) is a common hallmark in human or experimental pulmonary arterial hypertension (PAH). Likewise, genetic variants in KCNA5 have been found in patients with PAH, but their functional consequences and potential impact on the disease are largely unknown. Herein, this study aimed to characterize the functional consequences of seven KCNA5 variants found in a cohort of patients with PAH. Potassium currents were recorded by patch-clamp technique in HEK293 cells transfected with wild-type or mutant Kv1.5 cDNA. Flow cytometry, Western blot, and confocal microscopy techniques were used for measuring protein expression and cell apoptosis in HEK293 and human pulmonary artery smooth muscle cells. KCNA5 variants (namely, Arg184Pro and Gly384Arg) found in patients with PAH resulted in a clear loss of potassium channel function as assessed by electrophysiological and molecular modeling analyses. The Arg184Pro variant also resulted in a pronounced reduction of Kv1.5 expression. Transfection with Arg184Pro or Gly384Arg variants decreased apoptosis of human pulmonary artery smooth muscle cells compared with the wild-type cells, demonstrating that KCNA5 dysfunction in both variants affects cell viability. Thus, in addition to affecting channel activity, both variants were associated with impaired apoptosis, a crucial process linked to the disease. The estimated prevalence of dysfunctional KCNA5 variants in the PAH population analyzed was around 1%. The data indicate that some KCNA5 variants found in patients with PAH have critical consequences for channel function, supporting the idea that KCNA5 pathogenic variants may be a causative or contributing factor for PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/metabolismo , Células HEK293 , Hipertensão Pulmonar/metabolismo , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Artéria Pulmonar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...